direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publications

2021

S. Aygün and S. Klinge. Multiscale modeling of calcified hydrogel networks. PAMM, 21(1):e202100115, 2021.

S. Aygün and S. Klinge. Study of stochastic aspects in the modeling of the strain-induced crystallization in unfilled polymers. PAMM, 20(1):e202000031, 2021.

S. Aygün and S. Klinge. Thermodynamical model for strain-induced crystallization in polymers. 25th International Congress of Theoretical and Applied Mechanics – Book of Abstracts, 1:2298–2299, 2021.

S. Aygün, T. Wiegold and S. Klinge. Coupling of the phase field approach to the Armstrong-Frederick model for the simulation of ductile damage under cyclic load. Int. J. Plast., 143:103021, 2021.

M. Babic, G. Varga, D. Ghiculescu, M. Jakubowicz, S. Slavov, G. Seritan and D. Marinkovic. A novel approach for pattern recognition by using graph theory and its application in mechanical engineering. Acad. J. Manuf. Eng., 19(3):5–10, 2021.

S. E. Chavoshi, V. Badali and S. E. M. Torshizi. A novel method for flame bending of thick-walled pipes. Int. J. Manuf. Res., 16(3), 2021.

S. Hamidrad, M. Abdollahi, V. Badali, M. Nikkhoo and S. Naserkhaki. Biomechanical modeling of spinal ligaments: finite element analysis of L4-L5 spinal segment. Comput. Methods Biomech. Biomed. Eng., 1–12, 2021.

D. C. Haspinger, S. Klinge and G. A. Holzapfel. Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. PLoS Comput. Biol., 17(5):e1008784, 2021.

S. Hildebrand and C. Neumann. Die BYTE Challenge – One bit at a time. INFORMATIK 2021, Lecture Notes in Informatics, Gesellschaft für Informatik, 2021.

S. Hildebrand, C. Neumann, L. Wolf, A. Tauchnitz and R. Krüger. Die BYTE Challenge – ein digitaler Technik-Wettbewerb. SKILL 2021, Lecture Notes in Informatics, Gesellschaft für Informatik, 2021.

S. Klinge, T. Wiegold, S. Aygün, R. P. Gilbert and G. A. Holzapfel. Numerical modeling of the receptor driven endocytosis. PAMM, 21(1):e202100142, 2021.

S. Klinge, T. Wiegold, S. Aygün, R. P. Gilbert and G. A. Holzapfel. On the mechanical modeling of cell components. PAMM, 20(1):e202000129, 2021.

A. J. T. Kuchak, D. Marinkovic and M. Zehn. Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. J. Vib. Eng. Technol., 9(1):51–60, 2021.

T. Mahmood, J. Ahmmad, Z. Ali, D. Pamucar and D. Marinkovic. Interval valued t-spherical fuzzy soft average aggregation operators and their applications in multiple-criteria decision making. Symmetry, 13(5):829, 2021.

D. Marinkovic. Modal Space Based Real-Time FE Simulations of Complex and Multifunctional Structures. Proceedings of the 10th international triennial conference Heavy Machinery, HM 2021, Vrnjačka Banja, 1–8, 2021.

M. Nedeljković, A. Puška, S. Doljanica, S. V. Jovanović, P. Brzaković, Ž. Stević and D. Marinkovic. Evaluation of rapeseed varieties using novel integrated fuzzy PIPRECIA - fuzzy MABAC model. PLoS ONE, 16:e0246857, 2021.

P. K. D. Pramanik, S. Biswas, S. Pal, D. Marinkovic and P. Choudhury. A Comparative Analysis of Multi-Criteria Decision-Making Methods for Resource Selection in Mobile Crowd Computing. Symmetry, 13(9):1713, 2021.

C. Strzalka, D. Marinkovic and M. W. Zehn. Stress Mode Superposition for a Priori Detection of Highly Stressed Areas: Mode Normalisation and Loading Influence. J. Appl. Comput. Mech., 7(3):1698–1709, 2021.

T. Wiegold, S. Aygün and S. Klinge. Numerical simulation of low cycle fatigue behavior, combining the phase-field method and the Armstrong-Frederick model. PAMM, 21(1):e202100111, 2021.

T. Wiegold and S. Klinge. Numerical simulation of cyclic deformation behavior of SLM-manufactured aluminum alloys. PAMM, 20(1):e202000181.

T. Wiegold, S. Klinge, R. P. Gilbert and G. A. Holzapfel. Numerical simulation of the viral entry into a cell driven by receptor diffusion. Comput. Math. Appl., 84:224–243, 2021.

R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar, D. Marinkovic and D. Bozanic. Robust aggregation operators for intuitionistic fuzzy hyper-soft set with their application to solve MCDM problem. Entropy, 23(6):688, 2021.

2020

S. Aygün and S. Klinge. Continuum mechanical modeling of strain-induced crystallization in polymers.
Int. J. Solids Struct., 196–197:129–139, 2020.

S. Aygün and S. Klinge. Thermomechanical Modeling of Microstructure Evolution Caused by Strain-Induced Crystallization. Polymers, 12 (11):2575, 2020.

2019

S. Aygün and S. Klinge. Coupled thermomechanical model for strain-induced crystallization in polymers. PAMM, 19(1):e201900342, 2019.

S. Aygün and S. Klinge. Modeling the thermomechanical behavior of strain-induced crystallization in unfilled polymers. Proceedings of the 8th GACM Colloquium on Computational Mechanics, 151–154, 2019.

V. Fohrmeister, S. Klinge and J. Mosler. On the implementation of rate-independent gradient-enhanced crystal plasticity theory. PAMM, 19(1):e201900461, 2019.

T. Wiegold, S. Klinge, R. P. Gilbert and G. A. Holzapfel. Numerical simulation of the viral entry into a cell by receptor driven endocytosis. Proceedings of the 8th GACM Colloquium on Computational Mechanics, 401–404.

T. Wiegold, S. Klinge, G. A. Holzapfel and R. P. Gilbert. Computational Modeling of Adhesive Contact between a Virus and a Cell during Receptor Driven Endocytosis. PAMM, 19(1):e201900161, 2019.

2018

M. Awd, S. Siddique, J. Johannsen, T. Wiegold, S. Klinge, C. Emmelmann and F. Walther. Quality assurance of additively manufactured alloys for aerospace industry by non-destructive testing and numerical modeling. Proceedings of the 10th International Conference on Non-destructive Testing in Aero-space, 1–10, 2018.

S. Aygün and S. Klinge. Study of the microstructure evolution caused by the strain‐induced crystallization in polymers. PAMM, 18(1):e201800224, 2018.


S. Klinge, S. Aygün and M. Bambach. Extended Simulations of the Roll Bonding Process. PAMM, 18(1):e201800257, 2018.


S. Klinge, S. Aygün, R. P. Gilbert and G. A. Holzapfel. Multiscale FEM simulations of cross-linked actin network embedded in cytosol with the focus on the filament orientation. Int. J. Numer. Methods Biomed. Eng., 34(7):e2993, 2018.


S. Siddique, M. Awd, T. Wiegold, S. Klinge and F. Walther. Simulation of cyclic deformation behavior of selective laser melted and hybrid-manufactured aluminum alloys using the phase-field method. Appl. Sci., 8(10):1948, 2018.


T. Wiegold, S. Klinge, S. Aygün, R. P. Gilbert and G. A. Holzapfel. Viscoelasticity of cross‐linked actin network embedded in cytosol. PAMM, 18(1):e201800151, 2018.

2017

S. Aygün and S. Klinge. Mechanical Modeling of the Strain-Induced-Crystallization in Polymers. PAMM, 17(1):389–390, 2017.

S. Aygün, S. Klinge and S. Govindjee. Continuum Mechanical Modeling of Strain-Induced Crystallization in Polymers. Proceedings of the 7th GACM Colloquium on Computational Mechanics, 579–582, 2017.

M. Bambach and S. Klinge. Consistency of Dynamic Recrystallization Models from the Perspective of Physical Metallurgy and Continuum Mechanics. PAMM, 17(1):395–396, 2017.

S. Klinge, T. Wiegold, G. A. Holzapfel and R. P. Gilbert. The Influence of Binder Mobility to the Viral Entry Driven by the Receptor Diffusion. PAMM, 17(1):197–198, 2017.

2016

S. Klinge, S. Aygün, J. Mosler and G. A. Holzapfel. Cross-linked actin networks: Micro- and macroscopic effects. PAMM, 16(1):93–94, 2016.

S. Klinge and K. Hackl. Application of the Multiscale FEM to the Determination of Macroscopic Deformations Caused by Dissolution-precipitation Creep. Int. J. Multiscale Comp. Eng., 14(2):95–111, 2016.

2015

S. Klinge, K. Hackl and J. Renner. Mechanical Model for Dissolution-Precipitation Creep Based on the Principle of Minimizing Dissipation Potential. Proc. Roy. Soc. A, 471:2180–2202, 2015.

S. Klinge and P. Steinmann. Determination of Material Parameters Corresponding to Viscoelastic Curing Polymers. PAMM, 15(1):315–316, 2015.

S. Klinge and P. Steinmann. Inverse Analysis for Heterogeneous Materials and its Application to Viscoelastic Curing Polymers. Comput. Mech., 55:603–615, 2015.

2013

S. Klinge. Determination of the Geometry of the RVE for Cancellous Bone by Using the Effective Complex Shear Modulus, Biomechan. Model. Mechanobiol., 12(2):401–412, 2013.

S. Klinge, K. Hackl and R.P. Gilbert. Investigation of the Influence of Reflection on the Attenuation of Cancellous Bone. Biomechan. Model. Mechanobiol., 12(1):185–199, 2013.

2012

A. Bartels, S. Klinge, K. Hackl and P. Steinmann. Single and Multiscale Aspects of the Modeling of Curing Polymers. PAMM, 12(1):303–304, 2012.

S. Klinge. Inverse Analysis for Multiphase Nonlinear Composites with Random Microstructure. Int. J. Multiscale Comp. Eng., 10(4):361–373, 2012.

S. Klinge. Parameter Identification for Two-Phase Nonlinear Composites. Comput. Struct., 108–109:118–124, 2012.

S. Klinge, A. Bartels, K. Hackl and P. Steinmann. Viscoelastic Effects and Shrinkage as the Accompanying Phenomena of the Curing of Polymers. Single- and Multiscale Effects. PAMM, 12(1):435–436, 2012.

S. Klinge, A. Bartels and P. Steinmann. Modeling of Curing Processes Based on a Multi-Field Potential. Single- and Multiscale Aspects. Int. J. Solid. Struct., 49:2320–2333, 2012.

S. Klinge, A. Bartels and P. Steinmann. The Multiscale Approach to the Curing of Polymers Incorporating Viscous and Shrinkage Effects. Int. J. Solid. Struct., 49:3883–3900, 2012.

S. Klinge and K. Hackl. Application of the Multiscale FEM to the Modeling of Nonlinear Composites with a Random Microstructure. Int. J. Multiscale Comp. Eng., 10(3):213–227, 2012.

S. Klinge and K. Hackl. Contribution of the Reflection to the Attenuation Properties of Cancellous Bone. Complex Var. Elliptic Equ., 57(2–4):425–436, 2012.

2011

R. P. Gilbert, A. Vasilic and S. Ilic. Homogenization Theories and Inverse Problems, Bone Quantitative Ultrasound. P. Laugier and G. Haiat (Eds.), Springer, 229-264, 2011.

C. Günther, S. Ilic and K. Hackl. Application of the Green Tensor to the Modeling of Solution-Precipitation Creep. PAMM, 11:375–376, 2011.

S. Ilic, K. Hackl and R. P. Gilbert. Application of a Biphasic Representative Volume Element to the Simulation of Wave Propagation through Cancellous Bone. J. Comput. Acoust., 19(2):111–138, 2011.

2010

R. P. Gilbert, K. Hackl and S. Ilic. Investigation of the Acoustic Properties of the Cancellous Bone. Progress in Analysis and its Applications, M. Ruzhansky and J. Wirth (Eds.), World Scientific, 570–5577, 2010.

S. Ilic and K. Hackl. Inverse Problems in the Modelling of Composite Materials. Proceedings of the Seventh International Conference on Engineering Computational Technology (ECT), B.H.V. Topping, J.M.Adam, F.J. Pallares, R. Bru and M.L. Romero (Eds.), Civil-Comp Press, Stirlingshire, Scotland, Paper 122, 2010.

S. Ilic and K. Hackl. Solution-precipitation Creep - Extended FE Implementation, Variational Concepts with Application to the Mechanics of Materials. Springer, 105–116, 2010.

S. Ilic, K. Hackl and R.P. Gilbert. Application of the Multiscale FEM to the Modeling of Cancellous Bone. Biomechan. Model. Mechanobiol., 9(1):87–102, 2010.

2009

K. Hackl, S. Ilic and R. P. Gilbert. Multiscale Modeling for Cancellous Bone by Using Shell Elements, Shell Structures: Theory and Applications. W. Pietrasckiewicz and I. Kreja (Eds.), Taylor & Francis Group CRC Press, 249–252, 2009.

S. Ilic and K. Hackl. Application of the Multiscale FEM to the Modeling of Nonlinear Multiphase Materials. J. Theor. Appl. Mech., 47:537–551, 2009.

S. Ilic and K. Hackl. Simulation of Diffusional Processes from the Microscopic and Macroscopic Point of View. PAMM, 9:429–430, 2009.

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008